

CLINICAL PERFORMANCE OF RESIN COMPOSITE RESTORATIONS IN POSTERIOR TEETH: A REVIEW

Pancu Galina, Nicoleta Tofan*, Georgescu Andrei*, Gianina Iovan, Ghiorghe Angela, Stoleriu Simona, Nica Irina, Andrian Sorin, Topoliceanu Claudiu

Discipline of Cariology and Restorative Odontotherapy,
Faculty of Dental Medicine, U.M.F. "Grigore T. Popa" Iasi

Corresponding authors: Tofan Nicoleta e-mail nicoleta.tofan@umfiasi.ro
Georgescu Andrei e-mail andrei.georgescu@umfiasi.ro

Abstract

Resin composites are the first choice for direct restoration of posterior teeth in the treatment of dental caries. This article reviews factors that influence the clinical performance of composite restorations and the results of clinical trials assessing longevity of posterior resin composite restorations. *Materials and method.* PubMed, and Web of Science electronic databases were searched for articles investigating the clinical performance of direct resin composite restorations placed in posterior teeth. *Results and discussions.* Factors with significant influence on longevity of posterior composite restorations include patient-related factors (age, carious risk, periodontal disease, bruxism), dental group, cavity size and volume, cervical margin extension, root-filled teeth, occlusal stress. *Conclusions.* Dental resin composites are material of choice for use in direct minimal interventions in posterior teeth. For patients without bruxism, in medium size cavities, direct composite resins demonstrate similar clinical performance with amalgam restorations. The clinical performance of restorations depends on a number of factors including variables related to the restored tooth, the materials and techniques employed, the patient's risks, and professional clinical decisions.

Keywords: resin composites; posterior teeth; clinical performance

INTRODUCTION

Amalgam restorations were gold standard in restoration of posterior teeth for many decades, owing to its price, low technique sensitivity and long-term durability [1]. However, concerns over the mercury release and the negative environmental impact of mercury as well as the benefits of modern adhesive techniques favor resin composites as primary restorative materials in posterior teeth, removing amalgam from preferences of most patients [1, 2]. The improvements in bonding systems, new restorative techniques, auxiliary instruments and devices contribute to higher longevity of direct composite posterior restorations [3-10]. The clinical performance of these restorative materials was also improved by

several modifications implemented in resin composite formulations such as dimethacrylate monomers with higher molecular weights and lower polymerization stress, increased volume of inorganic fillers with decreased particle size, improved interaction between resin matrix and filler particles, as well as more effective photoinitiator systems [11, 12].

Every year manufacturers introduce new versions of well-known resin composites, updates that are associated with new packages, new brand logos as well as increased costs [13]. The primary criteria for selection of resin composites for posterior teeth should be handling characteristics, ease of use, and the availability of shades and pigments, in addition to other criteria that may influence

their clinical use. However, dentists opinion about resin composite selection in the treatment of posterior teeth is also driven by costs, brands reputation and packaging design [14].

Among the benefits of composite resins, we can list the aesthetics facilitated by their color and translucency similar to dental tissues, the adhesive strength to enamel and dentin achieved with the help of adhesive systems, and mechanical properties comparable to hard dental tissues [14]. Regarding the main disadvantages of composite resins, these include polymerization shrinkage evaluated at 0.3-1.5% linear shrinkage, or 1.5-3.5% volumetric shrinkage for Bis-GMA based monomer resins, increased wear (12-50 $\mu\text{m}/\text{year}$), and volumetric expansion approximately six times greater than that of hard dental tissues [14]. When compared to amalgam or inlay/onlay restorations, the advantages of resin composites are:

- facilitate greater preservation of dental tissues by enabling the use of additive techniques [13];
- have better prognosis of recovery of the remaining dental structure in case of restoration failure [13];
- in large dental cavities, resin composite restorations have better biomechanical behavior when compared to amalgam [16].

Disadvantages of resin composite restorations when compared to amalgam and composite inlay/onlay restorations involve wear, marginal defects, marginal and surface staining [17]. Resin composites are contraindicated in the treatment of patients with bruxism, clenching, and parafunctional habits due to mechanical overloading leading to excessive wear, fractures, and failures [18].

In this context, the choice of restorative material for posterior restorations will depend on shared decision-making between dentist and patient, local directives and protocols [1].

AIM OF REVIEW

The aim of this article is to provide a general perspective of the aspects that influence the clinical performance of resin composite restorations and comparative data regarding longevity of posterior direct restorations versus amalgam and indirect composite inlay/onlay restorations.

MATERIALS AND METHOD.

PubMed, and Web of Science electronic databases were searched for articles investigating the clinical performance of direct resin composite restorations placed in posterior teeth. The search strategy used a combination of keywords: dental, composite, restoration, USPHS, FDI, clinical performance, longevity, durability, or the outcome of efficacy. We included longitudinal, prospective, and randomised controlled trials (RCTs) assessing functional durability of dental composite resin in posterior teeth as well as studies comparing them with dental amalgam restorations or inlay/onlay restorations in permanent posterior teeth (papers published between 2007 and 2023). All clinical studies with posterior direct composites were included with special attention to articles published in the last 10 years. Special attention was given to studies assessing risk factors for clinical performance of composite restorations as well as medium- and long-term studies using USPHS and FDI indices for the assessment of functional durability of resin composite restorations in posterior teeth. Exclusion criteria were as follows:

case reports/case series; animal studies; *in*

vitro studies

RESULTS AND DISCUSSIONS.

Factors influencing the clinical performance of posterior resin composite restorations

Dentists must understand various factors that can interact with resin composite restorations in oral cavity.

Considering these factors, dentist can decide when direct resin composite posterior can have long-term success, when might an indirect restoration offer a clinical edge compared to a direct one, under what circumstances is adhesive cusp coverage (onlay) recommended, when should resistance form designs be incorporated into adhesive restorations, and when a coverage crown is preferable [19]. Cardoso et al (2023) proposed CARES concept based on five parameters: Cusps coverage, Advantages and limitations of adhesion, Required resistance forms, Esthetic considerations, as well as Subgingival management [19].

Masticatory forces, bruxism, diet, saliva, oral biofilm are known as major factors that impact long-term success of direct resin composite restorations [20].

Other variables known as confounders can influence short- and medium term functional durability such as patient-related factors (systemic status, demographic variables, oral hygiene level, tooth, chewing patterns, diet related habits), tooth location, cariogenic risk, periodontitis susceptibility as well as dentist related factors (experience, technical ability) [20].

Regarding high cariogenic and periodontal risk patients, experience of dental professionals as well as patient-specific demands significantly influences the longevity of posterior resin composites

[21, 22]. In relation to patients' caries risk, those with a high risk had failure rates of 3.2% at 5 years and 4.6% at 10 years post-treatment. Conversely, patients with a low risk had failure rates of 1.2% at 5 years and 1.6% at 10 years post-treatment. For restorations with a glass-ionomer cement base or liner, failure rates were 2.2% at 5 years and 2.7% at 10 years post-treatment. Restorations without a glass-ionomer cement base or liner had failure rates of 1.7% at 5 years and 2.2% at 10 years post-treatment. Larger surface restorations have a higher risk of failure, as each additional surface increases this risk by 30%-40%. The risk of failure for restorations in molars was higher than for those in premolars. The main reasons for failure were secondary marginal caries and marginal or bulk fractures of direct composite resin restorations. Logistic regression analysis indicated a significantly higher risk of failure for patients with high cariogenic risk and those with higher number of restored dental surfaces [22].

Pizzolotto et al (2022) classified factors in two categories: factors with significant and limited influence on durability of posterior composite restorations [13].

Factors that influence significantly the longevity of composite restorations in posterior teeth are described further.

Dental group is one of them, with molars associated with higher composite restorations failure rate by fracture and secondary caries [23]. Greater size and volume of dental cavity increases the risk of failures of posterior resin composites [24]. Higher failures rates of resin composite

restorations (fractures, secondary caries) were recorded in root-filled teeth when compared with vital teeth [25]. Patient's age influence the success/failure of this category of resin composite restoration; children and elderly people were age groups with highest failure rate [25, 26]. Also, men have higher failure rates in posterior resin composite restorations in studies that compared success/failure rate according to gender [25, 26]. Combination of poor coronal marginal sealing and secondary caries in endodontically-treated teeth lead also to higher rates of apical periodontitis and failure of endodontic treatment [26-30]. The absence of adjacent teeth due to dental caries or periodontal disease or the location as last tooth on arch, predispose coronal restoration to increased failure rate [31, 32]. Other patient-related risk factors include high cariogenic risk (new caries lesions), occlusal stress, periodontal status, smoking, dietary habits, and parafunctional habits [33, 34]. Resin composite restorations with cervical margins close to the level of enamel-cement junction predispose to secondary caries leading to failure of proximal-occlusal restorations [35]. Class II and age of restorations between 3-5 years are statistically significant predictors of unsatisfactory or unacceptable FDI scores for posterior composite resin restorations [36].

Heintze & Rousson (2012) conducted a systematic review of prospective studies to examine how operative techniques and materials affect the success rate of Class II restorations when compared with amalgam [37]. The primary reasons for replacing restorations were fractures within the restoration and

secondary marginal caries. Macrohybrid composite resin restorations had significantly higher failure rates due to the loss of anatomical form compared to other composite resins (hybrid, microhybrid, nanohybrid). Additionally, restorations placed without enamel etching exhibited significantly higher rates of marginal staining than those placed using selective enamel etching techniques. The isolation technique also played a role; restorations placed with a rubber dam had significantly fewer material fractures necessitating replacement compared to those placed under conventional isolation conditions.

Factors with limited influence on the clinical durability of posterior resin composite restorations include factors that can be controlled by dentist [13]. Once procedures are performed adequately, these factors will not significantly influence the rate of failures: resin composite brand (new resin composite generations have lower polymerisation shrinkage and higher resistance to wear and compressive forces) [4, 22], adhesive systems (recent studies reported lack of significant differences between different generations of adhesive systems) [38, 39], restorative technique (absence of significant differences between various techniques performed adequately with respect to layers thickness, internal porosity, marginal adaptation) [40, 41], isolation technique [42]. Photoactivation technique performed by using monowave or polywave LEDs can influence the rate of the conversion of monomers into polymers. The decrease of LEDs unit irradiance over time, specific to monowave LEDs is a factor that can reduce longevity of posterior resin composite restorations [43].

A systematic review indicated that most clinical studies indicated annual

failure rates between 1% and 3% for posterior Class I and II composite resin restorations [44]. Failure rates varied depending on factors such as dental group, operative technique, dentist experience, socioeconomic, demographic, and behavioral factors. Material properties did not significantly statistically influence the longevity of direct composite resin restorations. The main long-term failure reasons were secondary caries, individual cariogenic risk, restoration bulk fracture, as well as patient' parafunctions (bruxism) [45, 46].

In conclusion, the interaction between mechanical factors and biological components makes the process leading to resin composite restoration failure multifactorial and challenging to address [47].

Clinical performance of direct posterior resin composites restorations

The evaluation of the direct posterior composite restorations was a challenge. In clinical practice, restorations are frequently replaced based on a misinterpretation of the degree of deterioration, rather than due to an actual clinical failure. This practice of replacing restorations can lead to increasingly extensive treatments and significant costs. While previous evaluation systems (USPHS, Ryge criteria) favoured replacement of posterior composite restorations affected by wear, marginal gaps, or secondary caries, FDI criteria support minimal interventions such as marginal sealing or refurbishment as well as repair procedures [19]. Most research groups assessing the status of posterior resin composite restorations used Ryge criteria and USPHS criteria. However, the number of studies using these criteria

increased steadily in the last decade [47]. Despite the complexity and longer periods for data collection, FDI criteria are practical (various and freely selectable), relevant (sensitive, proper to use in clinical studies design), standardized (easy comparison between clinical trials). The descriptions of scores were harmonized to relate various clinical situations with possible therapeutic strategies: reviewing or monitoring (score 1-4), refurbishment or reseal (score 3), restoration repair (score 4), and restoration replacement (score 5). Though the failures of the direct posterior composite restorations are mainly related to the occurrence of fractures and adjacent caries, repair interventions can extend their lifespan [48, 49]. Material-related factors play a significant role in the onset of enamel recurrent caries. Considering the decrease of mineral ions in the early stages of dental caries [50], promising new resin composites with antibacterial and remineralizing properties will increase the longevity of resin composite-based restorations [51]. Academy of Operative Dentistry European Section (AODES) recommend adhesively bonded resin composites as the "material of choice" for the use in minimal interventions to the posterior teeth, including the use of refurbishment and repair procedures aiming to extend the lifespan of resin composite restorations [52].

A systematic review reported that average annual failure rate of posterior composite restorations vary between 0.08% to 6.3%, survival rates from 23% to 97.7%, and success rates ranges from 43.4% to 98.7% [45]. It was reported an average annual failure rate of 1.8% at 5 years and 2.4% at 10 years, for posterior direct

restorations using composite resins. At two years post-treatment, fractures are consistently a significant reason for restoration failure. The number of secondary caries increases over time, while endodontic complications are encountered in the first year post-treatment. The research group emphasize that short-term studies are still useful for excluding materials with initial catastrophic failures [22]. An 90% overall success rate of Class II direct composite resin restorations was reported at 10 years post-treatment, with no statistically significant difference compared to amalgam restorations [37]. Resin composite restorations in posterior teeth have significantly higher risk of failure than amalgam restorations (RR 1.89) and increased risk of secondary caries (RR 2.14) [1]. Regarding the cost-effectiveness of direct posterior restorations, it has been suggested that resin

composites are likely to be inferior to amalgam [53]. Also, amalgams are more cost-effective than resin composites in the replacement of Class II amalgam restorations [54]. One prospective study (follow-up 7 yrs.) concluded that amalgam restorations performed significantly better than composite restorations in large restorations and in those with more than three surfaces involved [55]. Despite lower survival rate when compared to amalgam, various research groups reported satisfactory results assessing resin composite restorations of Class I and Class II made from microhybrid and nanohybrid composite resins [56-65].

Table I exposes data supplied on longevity of posterior resin composite restorations placed in permanent teeth (failure rate, most frequent reasons for failure).

Table I. Success/failure rates and most frequent reasons of failure in posterior resin composite restorations vs. amalgam

Authors	Cavity type	Follow-up	Failure criteria	Failure rate	Most frequent reasons of failure in resin composite restorations
Bernardo et al (2007) [55]	Class I Class II	7 yrs.	Restoration needing replacement	Amalgam 5.6% Composite 14.5%	Secondary caries
Soncini et al (2007) [56]	Class I Class II	3.4 +/- 1.9 yrs.	Restoration needing replacement	Amalgam 10.8% Composite 14.9%	Secondary caries
Opdam et al (2007) [57]	Class I Class II	5-12 yrs.	Restoration needing replacement	Amalgam (5 yrs.; 10 yrs.)- 89.6%; 79.2% Composite (5 yrs.; 10 yrs.)- 91.7%; 82.2%	Secondary caries Endodontic complications Fracture of tooth
Naghipur et al (2016) [59]	Class II	12 yrs.	Restoration needing replacement	Amalgam- 8.5% Composite-	Secondary caries Tooth fracture

				14%	
Santos et al (2023) [65]	Class II	5 yrs.	USPHS criteria Bravo (fracture of restoration, secondary caries) Charlie (marginal adaptation)	Amalgam- 23.2% Composite- 22%	-Restoration fracture -Defective marginal adaptation

Van Dijken (2000) compared the clinical performance, 11 years post-treatment, of composite inlay/onlay restorations versus composite direct restorations in Class II cavities. The percentages of restorations considered clinically unacceptable were 17.7% in the inlay/onlay restoration group and 27.3% in the direct composite resin restoration group. The main reasons for failure for both inlay/onlay and direct restorations were fracture (8.3% versus 12.1%), occlusal wear at the occlusal contacts (4.2% versus 6.1%), and secondary caries (4.2% versus 9.1%). Significant differences were found between direct and indirect restorations in patients with bruxism. In patients without bruxism, while no statistically significant differences were recorded between inlays/onlays and direct composite resin restorations regarding the parameters characterizing clinical performance. The presence of secondary caries was detected exclusively in patients with a high cariogenic risk. The authors concluded that Class II cavities in patients with high caries risk, with the cervical margin placed in dentin reduce significantly the clinical performance of composite resin restorations [66]. However, a systematic review conducted by Grivas (2014) of more recent studies, highlights the lack of evidence to demonstrate the superiority of indirect composite resin restorations compared to direct composite resin

restorations. The differences between these two types of restorations regarding aesthetic and biological parameters were statistically insignificant at time intervals ranging from 12 months to 48 months post-treatment [67]. Fennis et al. (2014) and Cetin et al. (2013) compared direct and indirect techniques in the rehabilitation of posterior teeth and reported the absence of statistically significant differences between the study groups regarding retention, color stability over time, surface texture, postoperative sensitivity, cervical marginal adaptation, or the development of carious lesions adjacent to the restorations [68, 69]. Indirect composite inlays demonstrated superior clinical performance and significantly better anatomic form compared to direct composite restorations, while the overall clinical performance of direct and indirect techniques did not show statistically significant differences [70].

In line with evidence-based practice, clinicians should stay informed about the latest clinical research, perform their duties to the highest standards, consider patient opinions and preferences, and educate patients on the benefits of reconditioning and repairing defective restorations [71].

CONCLUSIONS.

- Dental resin composites are material of choice for use in direct minimal interventions in posterior

teeth.

- For patients without bruxism, in medium size cavities, direct composite resins restorations demonstrate similar clinical performance with amalgam restorations.
- Indirect composite inlays have superior clinical performance compared to direct composite restorations, while the overall clinical performance of direct and indirect composite restorations did not show statistically significant differences
- The clinical performance of restorations depends on a number of factors including variables related to the restored tooth, the materials and techniques employed, the patient's risks, and professional clinical decisions.

REFERENCES

1. Worthington HV, Khangura S, Seal K, Mierzwinski-Urban M, Veitz-Keenan A, Sahrmann P, Schmidlin PR, Davis D, Iheozor-Ejiofor Z, Rasines Alcaraz MG. Direct composite resin fillings versus amalgam fillings for permanent posterior teeth. *Cochrane Database Syst Rev*. 2021 Aug 13;8(8):CD005620. doi: 10.1002/14651858.CD005620.pub3.
2. Moraes R.R., Cenci M.S., Moura J.R., Demarco F.F., Loomans B., Opdam N. Clinical performance of resin composite restorations. *Curr. Oral Health Rep.* 2022, 9: 22–31.
3. Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A. Composite materials: composition, properties and clinical applications. A literature review. *Schweiz Monatsschr Zahnmed.* 2010;120(11): 972-86.
4. DaRosa Rodolpho P.A., Rodolfo B., Collares K., Correa M.B., Demarco F.F., Opdam N.J.M., Cenci M.S., Moraes R.R. Clinical performance of posterior resin composite restorations after up to 33 years. *Dent. Mater.* 2022, 38: 680–688.
5. Da Rosa Rodolpho P.A., Donassollo T.A., Cenci M.S., Loguércio A.D., Moraes R.R., Bronkhorst E.M., Opdam N.J.M., Demarco F.F. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. *Dent. Mater.* 2011, 27: 955–963.
6. Demarco F.F., Collares K., Correa M.B., Cenci M.S., Moraes R.R., Opdam N.J. Should my composite restorations last forever? Why are they failing? *Braz. Oral Res.* 2017, 31 (Suppl. 1), e56.
7. Borgia E, Baron R, Borgia JL. Quality and Survival of Direct Light-Activated Composite Resin Restorations in Posterior Teeth: A 5- to 20-Year Retrospective Longitudinal Study. *J Prosthodont.* 2019 Jan;28(1): 195-203.
8. Demarco F.F., Corrêa M.B., Cenci M.S., Moraes R.R., Opdam N.J. Longevity of posterior composite restorations: Not only a matter of materials. *Dent. Mater.* 2012, 28: 87–101.
9. Opdam N.J., Bronkhorst E.M., Loomans B.A., Huysmans M.C. 12-year survival of composite vs. amalgam restorations. *J. Dent. Res.* 2010, 89: 1063–1067.
10. Pallesen U., van Dijken J.W. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. *Dent. Mater.* 2015, 31: 1232–1244.
11. Ilie N., Hickel R. Resin composite restorative materials. *Aust Dent. J.* 2011, 56 (Suppl.1): 59–66
12. Aminoroaya A., Esmaeely Neisiany R., Nouri Khorasani S., Panahi P., Das O., Ramakrishna S.A. review of dental composites: Methods of characterizations. *ACS Biomater. Sci. Eng.* 2020, 6: 3713–3744.
13. Pizzolotto L, Moraes RR. Resin Composites in Posterior Teeth: Clinical Performance and Direct Restorative Techniques. *Dent J (Basel).* 2022 Nov 27;10(12):222. doi:

10.3390/dj10120222.

14. Schneider L.F., Fonseca A.S., Natal V.G., Cavalcante L.M., Moraes R.R. Is your opinion driven by the product price? *Face* 2019, 2, 274–276.
15. Dejak B, Młotkowski A. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication. *Dent Mater.* 2015 Mar;31(3):e77-87.
16. Pereira F.A., Zeola L.F., de Almeida Milito G., Reis B.R., Pereira R.D., Soares P.V. Restorative material and loading type influence on the biomechanical behavior of wedge shaped cervical lesions. *Clin. Oral Investig.* 2016, 20: 433–441.
17. Blum I.R., Ozcan M. Reparative dentistry: Possibilities and limitations. *Curr. Oral Health Rep.* 2018, 5: 264–269.
18. Lima VP, Crins LAMJ, Opdam NJM, Moraes RR, Bronkhorst EM, Huysmans MDNM, Loomans BAC. Deterioration of anterior resin composite restorations in moderate to severe tooth wear patients: 3-year results. *Clin Oral Investig.* 2022 Dec;26(12): 6925-6939.
19. Cardoso JA, Almeida PJ, Negrão R, Oliveira JV, Venuti P, Taveira T, Sezinando A. Clinical guidelines for posterior restorations based on Coverage, Adhesion, Resistance, Esthetics, and Subgingival management. The CARES concept: Part I – partial adhesive restorations. *Int J Esthet Dent.* 2023 Jul 18;18(3): 244-265.
20. Hickel R, Mesinger S, Opdam N, Loomans B, Frankenberger R, Cadenaro M, Burgess J, Peschke A, Heintze SD, Kühnisch J. Revised FDI criteria for evaluating direct and indirect dental restorationsrecommendations for its clinical use, interpretation, and reporting. *Clin Oral Investig.* 2023 Jun;27(6): 2573-2592.
21. Van de Sande F.H., Opdam N.J., Rodolpho P.A., Correa M.B., Demarco F.F., Cenci M.S. Patient risk factors' influence on survival of posterior composites. *J. Dent. Res.* 2013, 92 (Suppl. 7): 78S–83S.
22. Opdam N.J., van de Sande F.H., Bronkhorst E., Cenci M.S., Bottenberg P., Pallesen U., Gaengler P., Lindberg A., Huysmans M.C., van Dijken J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. *J. Dent. Res.* 2014, 93: 943–949.
23. Baldissera R.A., Corrêa M.B., Schuch H.S., Collares K., Nascimento G.G., Jardim P.S., Moraes R.R., Opdam N.J., Demarco F.F. Are there universal restorative composites for anterior and posterior teeth? *J. Dent.* 2013, 41: 1027–1035.
24. Laske M., Opdam N.J., Bronkhorst E.M., Braspenning J.C., Huysmans M.C. Risk factors for dental restoration survival: A practice-based study. *J. Dent. Res.* 2019, 98: 414–422.
25. Burke F.J., Lucarotti P.S. The ultimate guide to restoration longevity in England and Wales. Part 10: Key findings from a ten million restoration dataset. *Br. Dent. J.* 2018, 225: 1011–1018.
26. Laske, M.; Opdam, N.J.; Bronkhorst, E.M.; Braspenning, J.C.C.; Huysmans, M.C. Longevity of direct restorations in Dutch dental practices. Descriptive study out of a practice based research network. *J. Dent.* 2016, 46:12–17.
27. El Ouarti I, Chala S, Sakout M, Abdallaoui F. Prevalence and risk factors of Apical periodontitis in endodontically treated teeth: cross-sectional study in an Adult Moroccan subpopulation. *BMC Oral Health.* 2021 Mar 17;21(1):124.
28. Keratiotis G, Spineli L, De Bruyne MAA, De Moor RJJ, Meire MA. A 22-year follow-up cross-sectional study on periapical health in relation to the quality of root canal treatment in a Belgian population. *Int Endod J.* 2024 May;57(5): 533-548.
29. Sălceanu M, Tănculescu O, Hamburda T, Giuroiu C, Conchita C, Antohi C, Topoliceanu C, Melian A. Management of endodontic iatrogenia: a review. *Rom J Oral Reh.* 2023; 15(4): 331-340.
30. Sălceanu M, Hamburda T, Dascălu C, Giuroiu C, Antohi C, Concita C, Topoliceanu C, Furmuzache G-A, Rotaru-Costin A-T, Melian A. Occurrence of technical errors in endodontically treated teeth: a radiological study. *RJMD* 2024; 13(1): 58-69.
31. Skupien J.A., Opdam N., Winnen R., Bronkhorst E., Kreulen C., Pereira-Cenci T., Huysmans M.C. A practice-based study on the survival of restored endodontically treated teeth. *J. Endod.* 2013, 39: 1335–1340.

32. Jirathanyanatt T., Suksaphar W., Banomyong D., Ngoenwiwatkul Y. Endodontically treated posterior teeth restored with or without crown restorations: A 5-year retrospective study of survival rates from fracture. *J. Investig. Clin. Dent.* 2019, 10, e12426.

33. Mehta S.B., Bronkhorst E.M., Lima V.P., Crins L., Bronkhorst H., Opdam N.J., Huysmans D.N.J.M., Loomans B.A. The effect of pre-treatment levels of tooth wear and the applied increase in the vertical dimension of occlusion (VDO) on the survival of direct resin composite restorations. *J. Dent.* 2021, 111, 103712.

34. Palmier N.R., Madrid Troconis C.C., Normando A.G.C., Guerra E.N.S., Araújo A.L.D., Arboleda L.P.A., Fonsêca J.M., de Pauli Paglioni M., Gomes-Silva W., Vechiato Filho A.J.; et al. Impact of head and neck radiotherapy on the longevity of dental adhesive restorations: A systematic review and meta-analysis. *J. Prosthet. Dent.* 2022 Nov;128(5):886-896.

35. Kuper N.K., Opdam N.J., Bronkhorst E.M., Huysmans M.C. The influence of approximal restoration extension on the development of secondary caries. *J. Dent.* 2012, 40: 241–247.

36. Tiron B., Forna N., Topoliceanu C., Ghiorghe A., Stoleriu S., Pancu G., Nica I., Georgescu A., Brânzan R., Iovan G. Assessment of factors influencing the esthetic, functional and biological status of posterior composite resins restorations. *Rom J Oral Reh.* 2023; 15(3): 29-41.

37. Heintze SD, Rousson V. Clinical effectiveness of direct class II restorations - a meta-analysis. *J Adhes Dent.* 2012;14:407–431.

38. Dreweck F.D.S., Zarpellon D., Wambier L.M., Loguercio A.D., Reis A., Gomes O.M. Is there evidence that three-step etch-andrinse adhesives have better retention rates than one-step self-etch adhesives in noncarious cervical lesions? A systematic review and meta-analysis. *J. Adhes. Dent.* 2021a, 23:187–200.

39. Dreweck F.D.S., Burey A., de Oliveira Dreweck M., Loguercio A.D., Reis A. Adhesive strategies in cervical lesions: Systematic review and a network meta-analysis of randomized controlled trials. *Clin. Oral Investig.* 2021b, 25: 2495–2510.

40. Yazici A.R., Kutuk Z.B., Ergin E., Karahan S., Antonson S.A. Six-year clinical evaluation of bulk-fill and nanofill resin composite restorations. *Clin. Oral Investig.* 2022, 26: 417–426.

41. Van Dijken J.W., Pallesen U. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: A 7-year evaluation. *Dent. Mater.* 2011, 27: 150–156.

42. Miao C., Yang X., Wong M.C., Zou J., Zhou X., Li C., Wang Y. Rubber dam isolation for restorative treatment in dental patients. *Cochrane Database Syst. Rev.* 2021, 5, CD009858.

43. Kojic D.D., El-Mowafy O., Price R., El-Badrawy W. Efficacy of light-emitting diode light polymerization units used in private practices in Toronto, Ontario, Canada. *J. Am. Dent. Assoc.* 2019, 150: 802–808.

44. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. *Dent Mater* 2012; 28:87-101.

45. Demarco FF, Cenci MS, Montagner AF, de Lima VP, Correa MB, Moraes RR, Opdam NJM. Longevity of composite restorations is definitely not only about materials. *Dent Mater.* 2023 Jan;39(1):1-12.

46. Jafer MA, Qadiri AA, Mtwam NA, Hakami AH, Mowkly AA, Bhandi S, Patil S. Influence of Human and Bacterial Enzymes on Resin Restorations: A Review. *J Contemp Dent Pract.* 2022 Mar 1;23(3): 371-377.

47. Marquillier T, Doméjean S, Le Clerc J, Chemla F, Gritsch K, Maurin JC, Millet P, Pérard M, Grosogeoat B, Dursun E. The use of FDI criteria in clinical trials on direct dental restorations: A scoping review. *J Dent.* 2018 Jan;68:1-9.

48. Estay J., Martín J., Viera V., Valdivieso J., Bersezio C., Vildosola P., Major I.A., Andrade M.F., Moraes R.R., Moncada G.; et al. 12 Years of repair of amalgam and composite resins: A clinical study. *Oper. Dent.* 2018, 43: 12–21.

49. Van de Sande F.H., Moraes R.R., Elias R.V., Montagner A.F., Rodolpho P.A., Demarco F.F., Cenci M.S. Is composite repair suitable for anterior restorations? A long-term practice-based clinical study. *Clin. Oral Investig.* 2019, 23: 2795–2803.

50. Topoliceanu C, Stoleriu S, Ghiorghe A, Sălceanu M, Sandu AV, Andrian S. Chemical changes

of enamel occlusal surfaces affected by incipient dental caries: an EDX study. *Rev Chim.* 2013;64(11):1324-1328.

51. Elgezawi M, Hardy R, Abdalla MA, Heck K, Draenert M, Kaisarly D. Current Strategies to Control Recurrent and Residual Caries with Resin Composite Restorations: Operator- and Material-Related Factors. *J Clin Med.* 2022 Nov 7;11(21):6591. doi: 10.3390/jcm11216591.
52. Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, Shearer AC, Vanherle G, Wilson NH; Academy of Operative Dentistry European Section. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. *J Dent.* 2014 Apr;42(4):377-83.
53. Schwendicke F., Göstemeyer G., Stolpe M., Krois J. Amalgam alternatives: Cost-effectiveness and value of information analysis. *J. Dent. Res.* 2018, 97: 1317–1323.
54. Tobi H., Kreulen C.M., Vondeling H., van Amerongen W.E. Cost-effectiveness of composite resins and amalgam in the replacement of amalgam Class II restorations. *Community Dent. Oral Epidemiol.* 1999, 27: 137–143.
55. Bernardo M, Luis H, Martin MD, Leroux BG, Rue T, Leitão J, DeRouen TA. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. *J Am Dent Assoc.* 2007 Jun;138(6):775-83.
56. Soncini JA, Maserejian NN, Trachtenberg F, Tavares M, Hayes C. The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: findings From the New England Children's Amalgam Trial. *J Am Dent Assoc.* 2007 Jun;138(6):763-72.
57. Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA. A retrospective clinical study on longevity of posterior composite and amalgam restorations. *Dent Mater.* 2007 Jan;23(1):2-8.
58. Wong YJ. Low-quality evidence suggests that amalgam has increased longevity compared with resin-based composite in posterior restorations. *J Am Dent Assoc.* 2016;147(11):905-906.
59. Alhareky M, Tavares M. Amalgam vs Composite Restoration, Survival, and Secondary Caries. *J Evid Based Dent Pract.* 2016 Jun;16(2):107-9.
60. Naghipur S, Pesun I, Nowakowski A, Kim A. Twelve-year survival of 2-surface composite resin and amalgam premolar restorations placed by dental students. *J Prosthet Dent.* 2016;116(3):336-9.
61. Moraschini V, Fai CK, Alto RM, Dos Santos GO. Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. *J Dent.* 2015 Sep;43(9):1043-1050.
62. Laccabue M, Ahlf RL, Simecek JW. Frequency of restoration replacement in posterior teeth for U.S. Navy and Marine Corps personnel. *Oper Dent.* 2014;39(1):43-9.
63. Rasines Alcaraz MG, Veitz-Keenan A, Sahrmann P, Schmidlin PR, Davis D, Iheozor-Ejiofor Z. Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth. *Cochrane Database Syst Rev.* 2014 Mar 31;(3):CD005620.
64. Scholtanus JD, Ozcan M. Clinical longevity of extensive direct composite restorations in amalgam replacement: up to 3.5 years follow-up. *J Dent.* 2014;42(11):1404-10.
65. Santos MJMC, Rêgo HMC, Siddique I, Jessani A. Five-Year Clinical Performance of Complex Class II Resin Composite and Amalgam Restorations-A Retrospective Study. *Dent J (Basel).* 2023 Mar 24;11(4):88.
66. van Dijken JW. Direct resin composite inlays/onlays: an 11-year follow-up. *J Dent.* 2000 Jul;28(5):299-306.
67. Grivas E, Roudsari RV, Satterthwaite JD. Composite inlays: a systematic review. *Eur J Prosthodont Restor Dent.* 2014;22(3):117-24.
68. Fennis WM, Kuijs RH, Roeters FJ, Creugers NH, Kreulen CM. Randomized control trial of composite cuspal restorations: five-year results. *Journal of Dental Research.* 2014;93(1):36-41.
69. Cetin AR, Unlu N, Cobanoglu N. A five-year clinical evaluation of direct nanofilled and indirect composite resin restorations in posterior teeth. *Operative dentistry.* 2013 Apr 1;38(2):E31-41.
70. Azeem RA, Sureshbabu NM. Clinical performance of direct versus indirect composite

restorations in posterior teeth: A systematic review. *J Conserv Dent.* 2018;21(1):2-9.

71. Wilson N, Lynch CD, Brunton PA, Hickel R, Meyer-Lueckel H, Gurgan S, Pallesen U, Shearer AC, Tarle Z, Cotti E, Vanherle G, Opdam N. Criteria for the Replacement of Restorations: Academy of Operative Dentistry European Section. *Oper Dent.* 2016 Sep;41(S7):S48-S5